Challenges for Protein Processing Diversity

Denis CHEREAU

January the 23rd 2019
Challenge for proteins

• Growing demand in protein
 – World population expansion
 – More people willing to eat animal protein
 – Protein market price is raising (x 3 during the last 15 years)

• Durable agriculture
 – Compromise between yield and entrants
 – Land sanitary evolution

• Multiple potential sources
 – Seeds
 – Roots
 – Leaves
 – Coproducts
 – algae
 – Microorganisms
 – Insects
 – ….

Used as is or after processing
Agricultural ressources usages

- Usages dominated by feed
- 50% of the world population is using less than 25 g of animal proteins/day
- 18% of the world population is using more than 60 g of animal proteins per day

Allocation of biomass to production target (main product). Respective amounts include raw materials and by-products, even if their use fall into a different category.
Seed diversity

Shape

Composition

- **Proteins**
- **Starch**
- **Lipids**
- **Ash**
- **Sugars**
- **Other**

- Raw materials are **diverse** in shape, composition, texture...
- **Antinutritional factors** are often present (α-galactosides, Phytic acid, Polyphenols, Tannins, Chlorogenic acid, Phytooestrogens, Saponins, Alkaloids, Cyanogénic Heterosides, ...
Protein extraction strategies

Analysis

- **Raw materials**
 - Dehulling
 - Fat removal
 - Milling

Concentrate

- Dry fractionation
- Concentrate

Flour / meal / cake

- Wet fractionation
- Concentrate or isolate

Concentrate
Dry fractionation processes use the structural heterogeneities of the materials to produce specialized products.
Transformation process

Harvesting / storage

Cleaning Preparation

Dehulling

Milling

Fractionation

Batches?

Yields?

Functionality?

Protein enrichment?

Starch or fiber enrichment?
Seed preparation technology

Micronizing (micronizing company®)

Seed cleaner – SLN3 (Pfeuffer®)

Fluid bed dryer – TG 200 (Retsch®)

Densimetric table – LAK (Westrup®)
Seed dehulling technics

Stone mill and stone dehuller (Alma®)

Whitening/Shelling Machine (Schule®)

Roll crusher (Satake®)

Impact dehuller (Alma®)

Knife mill - SM300 (Retsch®)

Gravity classifier ZIGZAG – MZM 1-40 (Hosokawa-Alpine®)
Particle size reduction

How deconstruct the material?
The different mechanical forces involved

Impact
Cutting
Compression
Shearing
Abrasion

Each milling technology is a combination of these forces
Milling technologies

Pin mill - 100 UPZ (Hosokawa-Alpine®)

Beater mill - 100 UPZ (Hosokawa-Alpine®)

Knife mill - SM300 (Retsch®)

Impact mill - 70 ZPS (Hosokawa-Alpine®)

Roll mill – MLU 202 (Bühler®)
Powder fractionation

Vibration round screener
VRS600 (Allgaier®)

Gravity classifier ZIGZAG – MZM 1-40 (Hosokawa-Alpine®)

Air classifier - 70 ATP (Hosokawa-Alpine®)

Electrostatic separation (STET®)
Extraction of lipids and micro-constituents using solvents

- Hexane extraction → remove lipids
- Alcohol extraction → phenolics and saponins
- Microwave & ultrasound assisted extraction of oil
- CO$_2$ Supercritical extraction and subcritical Water extraction
- Alternative green solvents
- Alternative ionic liquids
- ...

...
Solvent free extraction

- Extraction of oil using **mechanical separation**
 - Cold-pressing using a screw press
 - temperature of 50-60°C
 - energy consumption reduction
 - 8 to 12% residual oil in the pressed cake
 - Skimming oil separator

- **Aqueous defatting** method
 - Simultaneous recovery of oil and proteins
 - Minimal proteins denaturation during fat removal
 - Removal of water-soluble undesirable components
 - Require a de-emulsification stage to break the emulsion
 - Can be combined with pre-treatments or specific enzymes
Wet fractionation
Solubilisation step

Faba Flour
- Maximum of solubility: pH 9 - 10
- Minimum of solubility: pH 4

Pin mill powder
- Evaluation of the protein solubilizing at pH 9.5
- Protein solubility vs. flour’s PSD
- Compromise between energetic cost and protein extraction yield
- For next step we selected a powder d90 = 166 µm

Graphs showing:
- Protein solubility vs. pH
- Protein solubility vs. flour’s PSD

Notes:
- Maximum for a d90 < 300 µm
- Yield
- 15%
Solid/Liquid separation

3 phases decanter
- Flottweg, Alpha Laval

Clarifier
- GEA, Alpha-Laval

Hydro-cyclone

Basket centrifuge
- BMA, Robatel

Rotary pressure filter
- BHS, Andritz

Filter press
- Faure, BHS, Alfa Laval, Andritz

Belt filter
- Andritz, Flottweg
Membranes, material and design

Tami industries, Noyons

Tubular membranes

Pall-Exekia, Bazet

Spiral wound membranes

Tubular membranes

Padovan, Andritz

Dynamic Cross Flow Filter
Drying technologies

Spray dryer

GEA – Sicca Dania – Alfa Laval...

Roller dryers

GOUDA ANDRITZ

Ventilated dryers

WOMM

Attrition dryers

LIST

Continious vacuum dryer

HOSOKAWA
Organoleptic properties of pulse protein

• Associated with **off-notes**
 – Astringency
 – Bitterness
 – Beany, hay, cardboard aroma

• Strategies to deal with off-notes
 – Selecting favorable raw materials
 Specie selection, storage conditions
 – Prevent by processing
 Dehulling, enzymes deactivation,微生物 control ...
 – Eliminate by post processing
 Flash under vacuum,...
 – Masking
 Sugars, salts, acids, flavouring, food matrix components, fermentation...
Disruptive technology with natural flocculent

- Precipitation process with natural flocculent
- Whole seed cracking
- Natural flocculent also targets the valorization of the hulls and/or brans through several fractionation and precipitation steps: pectin, pentosans, etc.

Process developed by Labiocrac
Successful industrial protein project

Brilliant brains

Smart ideas

Strong market understanding

Regulatory expertise
Market selection

Properties

Bioactive

Functional

Soluble

Wheat albumines & globulines
Corn Starch & Flour

Functional Wheat gluten
Soluble Wheat Gluten

Whey Protein Concentrate
Whey Protein Isolate

Eggs, Gelatin, NaCas

Insoluble

Corn Gluten
Vital Wheat Gluten

Proteins concentration %

0-20% 20-40% 40-60% 60-80% 80-100%

Increasing value
Raw material selection

- More than 1000 PC/PI worldwide.
- 35 different raw materials
- 138 different producers
- 66 distributors

Different forms:
- Flour
- Protein concentrate
- Protein isolate
- Protein hydrolysate

<table>
<thead>
<tr>
<th>Raw material</th>
<th>Nb of references</th>
<th>Raw material</th>
<th>Nb of references</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>1019</td>
<td>unidentified</td>
<td>4</td>
</tr>
<tr>
<td>soy</td>
<td>465</td>
<td>alfalfa</td>
<td>3</td>
</tr>
<tr>
<td>pea</td>
<td>134</td>
<td>Lentil</td>
<td>3</td>
</tr>
<tr>
<td>wheat</td>
<td>123</td>
<td>microorganisms</td>
<td>3</td>
</tr>
<tr>
<td>rice</td>
<td>85</td>
<td>oat</td>
<td>3</td>
</tr>
<tr>
<td>yeast</td>
<td>42</td>
<td>black bean</td>
<td>2</td>
</tr>
<tr>
<td>Hemp</td>
<td>20</td>
<td>chia</td>
<td>2</td>
</tr>
<tr>
<td>potato</td>
<td>20</td>
<td>mung bean</td>
<td>2</td>
</tr>
<tr>
<td>pumpkin</td>
<td>16</td>
<td>sesame</td>
<td>2</td>
</tr>
<tr>
<td>plant proteins</td>
<td>13</td>
<td>broadbean</td>
<td>1</td>
</tr>
<tr>
<td>algae</td>
<td>12</td>
<td>carob</td>
<td>1</td>
</tr>
<tr>
<td>almond</td>
<td>9</td>
<td>chickpea</td>
<td>1</td>
</tr>
<tr>
<td>corn</td>
<td>9</td>
<td>coconut</td>
<td>1</td>
</tr>
<tr>
<td>faba bean</td>
<td>9</td>
<td>cottonseed</td>
<td>1</td>
</tr>
<tr>
<td>lupin</td>
<td>8</td>
<td>flaxseeds</td>
<td>1</td>
</tr>
<tr>
<td>rapeseed</td>
<td>8</td>
<td>mankai</td>
<td>1</td>
</tr>
<tr>
<td>sunflower</td>
<td>8</td>
<td>psyllium</td>
<td>1</td>
</tr>
<tr>
<td>sacha Inchi</td>
<td>5</td>
<td>water lentils</td>
<td>1</td>
</tr>
</tbody>
</table>
Pick the right scale

- It is key to know which market is targeted in order to define the size of the project.
IMPROVE is a **protein innovation center**, located in France 1 hour north of Paris.

Private – public partnerships between
- industrials from the cereals, oilseed and pulses processing sectors
- Academics like Amiens University or INRA (French Institute of Agronomy)
- Financial investors including various banks and the French government

IMPROVE **started in 2014** to support innovation in the alternative protein world

IMPROVE can carry out **lab and pilot work** in order to process a wide range of raw materials (seeds, roots, leaves, by-products, microorganisms biomass, algae, insects...)

Who are we?
Get the most out of your Protein R&D budget!
Help us to make Proteins strong again!

Thanks

denis.chereau@improve-innov.com